Home
Class 12
MATHS
To the equation 2^(2pi//cos^(-1)x) - (a ...

To the equation `2^(2pi//cos^(-1)x) - (a + (1)/(2)) 2^(pi/cos^(-1)x) -a^(2) = 0` has only one real root, then

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation 3 cos^(-1) x - pi x - (pi)/(2) =0 has

If 2^(2pi//sin^((-1)x))-2(a+2)^(pi//sin^((-1)x))+8a<0 for at least one real x , then

Consider the equation sin^(-1)(x^(2)-6x+(17)/(2))+cos^(-1)k=(pi)/(2) , then :

The equation 2sin^(2)((x)/(2))cos^(2)x=x+(1)/(x),0 lt x le(pi)/(2) has

The solution of the equation cos^(-1)x+cos^(-1)2x=(2pi)/(3) is

The equation 2 sin^(2) (pi/2 cos^(2) x)=1-cos (pi sin 2x) is safisfied by

Number of solutions (s) of the equations cos^(-1) ( 1-x) - 2 cos^(-1) x = pi/2 is

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)