Home
Class 12
MATHS
If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3...

If `sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1] rarr [0, pi]` be two bijective functions, respectively inverse of bijective functions `sin : [(pi)/(2), (3pi)/(2)] rarr [-1, 1] and cos : [0, pi] rarr [-1, 1] " then " sin^(-1) x + cos^(-1) x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) : [-1, 1] rarr [(pi)/(2), (3pi)/(2)] and cos^(-1) : [-1, 1] rarr [0, pi] be two bijective functions, respectively inverse of bijective functions sin : [(pi)/(2), (3pi)/(2)] rarr [-1, 10 and cos : [0, pi] rarr [-1, 1] " then " sin^(-1) x + cos^(-1) x is

Function f : [(pi)/(2), (3pi)/(2)] rarr [-1, 1], f(x) = sin x is

Function f[(1)/(2)pi, (3)/(2)pi] rarr [-1, 1], f(x) = cos x is

If sin ^(-1) x + sin ^(-1) y = (pi)/(6) , then cos^(-1) x + cos ^(-1) y =?

sin[sin^(-1) (-(1)/(2))+ (pi)/(3)]=?

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

If cos^(-1) x = (pi)/(3) , the find the value of sin ^(-1)x .

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in

Solve : cos ^(-1) x + sin ^(-1) "" (x)/( 2) = (pi)/(6)