Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^...

If `sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2)` is equal to 1 (b) 2 (c) `1/2` (d) none of these

Text Solution

AI Generated Solution

To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y = \frac{\pi}{2} \] ### Step 1: Rewrite the equation From the equation above, we can express \(\sin^{-1} x\) in terms of \(\sin^{-1} y\): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^2y^2+y^2z^2+z^2x^2), where K is equal to 1 (b) 2 (c) 4 (d) none of these

If y=(sin^(-1)x)^2,\ then (1-x^2)y_2 is equal to x y_1+2 (b) x y_1-2 (c) x y_1+2 (d) none of these

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0

If y=sin(m\ sin^(-1)x) , then (1-x^2)y_2-x y_1 is equal to m^2y (b) m y (c) -m^2y (d) none of these

If y=(sin^(-1)x)/(sqrt(1-x^2)),t h e n((1-x^2)dy)/(dx) is equal to (a) x+y (b) 1+x y (c) 1-x y (d) x y-2

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these

If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+tan^(-1)((x z)/(y r)) is equal to pi (b) pi/2 (c) 0 (d) none of these