Home
Class 12
MATHS
The solution set of inequality (cot^(-1)...

The solution set of inequality `(cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0` is `(a , b),` then the value of `cot^(-1)a+cot^(-1)b` is____

Text Solution

AI Generated Solution

To solve the inequality \((\cot^{-1} x)(\tan^{-1} x) + (2 - \frac{\pi}{2}) \cot^{-1} x - 3 \tan^{-1} x - 3(2 - \frac{\pi}{2}) > 0\), we can follow these steps: ### Step 1: Substitute Variables Let \(y = \cot^{-1} x\). Then, we know that: \[ \tan^{-1} x = \frac{\pi}{2} - y \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of inequality ( cot^(-1) x) (tan^(-1) x) + (2 - pi/2) cot^(-1) x - 3 tan^(-1) x - 3 ( 2 - pi/2) gt 0 , is

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Solve the inequality tan^(-1)xgtcot^(-1)cot^(-1)x .

Solve for x : cot^(-1)x+tan^(-1)3=(pi)/2

The solution set of inequality (tan^(-1)x)(cot^(-1)x)-(tan^(-1)x)(1+(pi)/(2))-2cot^(-1)x+2(1+(pi)/(2))gtlim_(yrarr-oo)[sec^(-1)y-(pi)/(2)] is (where [ . ]denotes the G.I.F.)

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

Solve: 5tan^(-1)x+3cot^(-1)x=2pi

Number of solutions of equation tan^(-1)(e^(-x))+cot^(-1)(|lnx|)=pi//2 is:

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is