Home
Class 12
MATHS
The number of values of x for which sin...

The number of values of `x` for which `sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^(-1)(x^4-(x^8)/3+(x^(12))/9ddot)=pi/2,` where `0lt=|x|

Text Solution

AI Generated Solution

To solve the equation \[ \sin^{-1}\left(x^2 - \frac{x^4}{3} + \frac{x^6}{9}\right) + \cos^{-1}\left(x^4 - \frac{x^8}{3} + \frac{x^{12}}{9}\right) = \frac{\pi}{2}, \] we can use the property that ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x for which sin^(-1)(x^2-(x^4)/3+(x^6)/9)+cos^(-1)(x^4-(x^8)/3+(x^(12))/9ddot)=pi/2, where 0<|x|

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

If sin^(- 1)(x-(x^2)/2+(x^3)/4-.....)+cos^(- 1)(x^2-(x^4)/2+(x^6)/4-.....)=pi/2 for 0 lt |x| lt sqrt2 then x=

Solve for x : sin^(- 1)(sin((2x^2+4)/(1+x^2)))lt pi-3

The number of solutions of 12 cos^(3) x-7 cos^(2) x+4 cos x=9 is

Number of real values of x in [0,4 pi] for which |sin x|+|sin x-3|+|sin x-4|=6 is:

The range of values of x which satisfy 2x^(2) + 9x + 4 lt 0 and x^(2) - 5x + 6 lt 0 is

Number of real values of x in [0,4 pi] for which |sin x|+|sin x-1|+|sinx-3|+|sin x-4|=6 is

Find number of solutions of the equation sin^(-1)(|log_(6)^(2)(cos x)-1|)+cos^(-1)(|3log_(6)^(2)(cos x)-7|)=(pi)/(2) , if x in [0, 4pi] .

Find number of solutions of the equation sin^(-1)(|log_(6)^(2)(cos x)-1|)+cos^(-1)(|3log_(6)^(2)(cos x)-7|)=(pi)/(2) , if x in [0, 4pi] .