Home
Class 12
MATHS
If theta= tan^(-1) (2tan^2 theta) - tan^...

If `theta= tan^(-1) (2tan^2 theta) - tan^(-1) (1/3 tan theta)`. Then `tan theta` is
a) -2 b) -1 c) 2/3 d) 2

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

Prove: tan (45^(@)+ theta ) = (1 + tan theta)/( 1- tan theta )

(1+tan^2theta) sin^2theta

Prove: tan (45 ^(@) - theta ) =(1 - tan theta)/( 1 + tan theta)

Prove that (tan^2 (2theta)-tan^2 theta)/(1-tan^2 (2theta) tan^2 theta)=tan (3theta)tan theta

Prove that tan8theta - tan6theta - tan2theta= tan8theta tan6theta tan2theta

If tan 3 theta + tan theta =2 tan 2 theta , then theta is equal to (n in Z)

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

Solve tan theta + tan 2 theta + tan theta * tan 2 theta * tan 3 theta=1

Prove that : tan 4 theta = (4 tan theta - 4 tan^3 theta)/(1-6 tan^2 theta + tan^4 theta) .