Home
Class 12
MATHS
If z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y), wh...

If `z=sec^(-1)(x+1/x)+sec^(-1)(y+1/y),` where `x y<0,` then the possible values of `z` is (are) `(8pi)/(10)` (b) `(7pi)/(10)` (c) `(9pi)/(10)` (d) `(21pi)/(20)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If z = sec^(-1) (x + 1/x) + sec^(-1) (y + 1/y) , where xy< 0, then the possible value of z is (are)

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If y=sec^(-1)((x+1)/(x-1))+sin^(-1)((x-1)/(x+1)),x > 0. Find (dy)/(dx)dot

If sec^(-1) x = cosec^(-1) y , then find the value of cos^(-1).(1)/(x) + cos^(-1).(1)/(y)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If "sec"^(-1)x="cosec"^(-1)y , show that 1/(x^(2))+1/(y^(2))=1

y = sec^(- 1)((x+1)/(x-1))+sin^(- 1)((x-1)/(x+1)) , x > 0. Find dy/dx

If y=sec^(-1)(sqrt(1+x^(2))) , when -1 lt x lt 1, then find (dy)/(dx)

If y = sec^(-1) (sqrt(x+1)/(sqrt(x-1)))+ sin^(-1)(sqrt(x-1)/(sqrt(x+1))) then (dy)/(dx) =