Home
Class 12
MATHS
If (sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(...

If `(sin^(-1)x+sin^(-1)w)(sin^(-1)y+sin^(-1)z)=pi^2,` then `D=|x^(N_1)y^(N_3)z^(N_3)w^(N_4)|(N_1,N_2,N_3,N_4 in N)` has a maximum value of 2 has a maximum value of 0 16 different D are possible has a minimum value of `-2`

Text Solution

AI Generated Solution

To solve the given problem, we need to analyze the equation: \[ (\sin^{-1} x + \sin^{-1} w)(\sin^{-1} y + \sin^{-1} z) = \pi^2 \] ### Step 1: Understanding the Maximum Values The maximum value of \(\sin^{-1} x\) occurs when \(x = 1\), which gives \(\sin^{-1} 1 = \frac{\pi}{2}\). Therefore, the maximum value of \(\sin^{-1} x + \sin^{-1} w\) is: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Sigma_(n=1)^(5)sin ^(-1) ( sin ( 2n -1)) is

If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n_(1),n_(2),n_(3),n_(4) in N value of |(x^(n1),y^(n2)),(z^(n)3,w^(n4))| cannot be equal to

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

If cos^(-1)((n)/(2pi)) gt(2pi)/(3) then maximum and minimum values of integer n are respectively

If equation sin^(-1) (4 sin^(2)theta + sin theta) + cos^(-1) (6 sin theta - 1) = (pi)/(2) has 10 solution for theta in [0, n pi] , then find the minimum value of n

Let f(x)=(x-1)^4(x-2)^n ,n in Ndot Then f(x) has (a) a maximum at x=1 if n is odd (b) a maximum at x=1 if n is even (c) a minimum at x=1 if n is even (d) a minima at x=2 if n is even

Prove that: sin^2(n+1)A-sin^2n A="sin"(2n+1)Asin A

(sum_(n=1)^10int_(-2n-1)^(-2n)sin^(27)(x)dx+sum_(n=1)^10int_(2n)^(2n+1)sin^(27)(x)dx)

If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, if n is odd local minimum, if n is odd local maximum, if n is even local minimum, if n is even

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi