Home
Class 12
MATHS
If -1< x < 0 , then cos^(-1)x is e...

If `-1< x < 0` , then `cos^(-1)x` is equal to (a) `sec^(-1)(1/ x)` (b) `pi-sin^(-1)sqrt(1+x^2)` (c) `pi+tan^(-1)(x/(sqrt(1-x^2)))` (d) `cot^(-1)(x/(sqrt(1-x^2)))`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x<0,t h e ntan^(-1)x is equal to -pi+cot^(-1)1/x (b) sin^(-1)x/(sqrt(1+x^2)) -cos^(-1)1/(sqrt(1+x^2)) (d) -cos e c^(-1)(sqrt(1+x^2))/x

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Differential coefficient of sec(tan^(-1)x) is (a) x/(1+x^2) (b) xsqrt(1+x^2) (c) 1/(sqrt(1+x^2)) (d) x/(sqrt(1+x^2))

Solve the equations. sin(tan^(-1)x),|x|<1 (A) x/(sqrt(1-x^2)) (B) 1/(sqrt(1-x^2)) (C) 1/(sqrt(1+x^2)) (D) x/(sqrt(1+x^2))

Differentiate sin^(-1)sqrt(1-x^2) with respect to cot^(-1)(x/sqrt(1-x^2)) if 0< x <1

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

"tan"(cos^(-1)x) is equal to x/(1+x^2) b. (sqrt(1+x^2))/x c. (sqrt(1-x^2))/x d. sqrt(1-2x)