Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y=pi/2 and sin2x=c...

If `sin^(-1)x+sin^(-1)y=pi/2` and `sin2x=cos2y ,` then (a) `x=pi/8+sqrt(1/2-(pi^2)/(64))` (b)`y= sqrt(1/2-(pi^2)/(64))-pi/(12)` (c)`x=pi/(12)+sqrt(1/2-(pi^2)/(64))` (d)`y=sqrt(1/2-(pi^2)/(64))-pi/8`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) x + sin^(-1) y = pi/2 , prove that x sqrt(1-y^2) + y sqrt(1-x^2) =1 .

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

lim_(xrarr1^(-)) (sqrtpi-sqrt(2sin^-1x))/sqrt(1-x)= (A) sqrt(2/pi) (B) sqrt(pi/2) (C) 1/pi (D) sqrt(1/pi)

If sin^(-1)(tan(pi/4))-sin^(-1)(sqrt(3/y))-(pi)/6=0 and x^(2)=y then x is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that x^(2)-y^(2)+z^(2)-2xz sqrt(1-y^(2))=0

f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

The value of lim_(xrarr(pi)/(4)) (sqrt(1-sqrt(sin2x)))/(pi-4x) is

A solution of sin^-1 (1) -sin^-1 (sqrt(3)/x^2)- pi/6 =0 is (A) x=-sqrt(2) (B) x=sqrt(2) (C) x=2 (D) x= 1/sqrt(2)

int_0^3(3x+1)/(x^2+9)dx = (pi^)/(12)+log(2sqrt(2)) (b) (pi^)/2+log(2sqrt(2)) (c) (pi^)/6+log(2sqrt(2)) (d) (pi^)/3+log(2sqrt(2))

Prove that int_0^(pi/2) \ sin^2 x / (1+sin x cos x) \ dx = pi/(3 sqrt(3)