Home
Class 12
MATHS
tan^(-1)[(cosx)/(1+sinx)] is equal to p...

`tan^(-1)[(cosx)/(1+sinx)]` is equal to `pi/4-x/2,forx in (-pi/2,(3pi)/2)` `pi/4-x/2,forx in (-pi/2,pi/2)` `pi/4-x/2,forx in (-pi/2,pi/2)` `pi/4-x/2,forx in (-(3pi)/2,pi/2)`

Text Solution

AI Generated Solution

To prove that \[ \tan^{-1}\left(\frac{\cos x}{1 + \sin x}\right) = \frac{\pi}{4} - \frac{x}{2} \] for \( x \) in the specified intervals, we can follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

If f(x)=sqrt(1-sin2x) , then f^(prime)(x) is equal to (a) -(cosx+sinx) ,for x in (pi/4,pi/2) (b) cosx+sinx ,for x in (0,pi/4) (c) -(cosx+sinx) ,for x in (0,pi/4) (d) cosx-sinx ,for x in (pi/4,pi/2)

tan^(-1)(x/y)-tan^(-1)(x-y)/(x+y) is equal to(A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y)) is equal to (A) pi/2 (B) pi/3 (C) pi/4 (D) (-3pi)/4

int_0^(pi//2)(sinx)/(sin x+cos x)dx equals to a. pi//2 b. pi//4 c. pi//3 d. pi

Range of tan^(-1)((2x)/(1+x^2)) is (a) [-pi/4,pi/4] (b) (-pi/2,pi/2) (c) (-pi/2,pi/4) (d) [pi/4,pi/2]

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

Solve (x-1)|x+1|cosx>0,forx in [-pi,pi]

The function f(x)""=""t a n^(-1)(sinx""+""cosx) is an increasing function in (1) (pi/4,pi/2) (2) (-pi/2,pi/4) (3) (0,pi/2) (4) (-pi/2,pi/2)

sin^2 pi/6 +cos^2 pi/3 -tan^2 pi/4=-1/2