Home
Class 12
MATHS
The value of sin^(-1)("cos"(cos^(-1)(cos...

The value of `sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))),` where `x in (pi/2,pi)` , is equal to `pi/2` (b) `-pi` (c) `pi` (d) `-pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to a) pi/2 (b) -pi (c) pi (d) -pi/2

What is the value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3) ?

The value of the definite integral int_(2pi)^(5pi//2)(sin^(-1)(cosx)+cos^(-1)(sinx))dx is equal to

int_(-pi//2)^(pi//2)"sin"|x|dx is equal to (a) 1 (b) 2 (c) -1 (d) -2

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(c0salpha) is equal to 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

The value of sin^(6)((pi)/(49))+cos^(6)((pi)/(49))-1+3sin^(2)((pi)/(49))cos^(2)((pi)/(49)) is equal to

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Write the principal value of cos^(-1)(cos(2pi)/3)+sin^(-1)(sin(2pi)/3)

The value of cos^(-1)(cos 12)-sin^(-1)(sin14) is -2 b. 8pi-26 c. 4pi+2 none of these