Home
Class 12
MATHS
The value of sin^(-1)(sin12)+sin^(-1)(co...

The value of `sin^(-1)(sin12)+sin^(-1)(cos12)=`

Text Solution

Verified by Experts

`sin^-1(sin12)+cos^-1(cos12)`
Here, we have to convert `sin12` into a value from `-pi/2` to ` pi/2` and `cos12` into a value from `0` to `pi`.
We can write,
`sin^-1(sin12)+cos^-1(cos12) = sin^-1(sin(12-4pi))+cos^-1(cos(4pi-12))`
`=12-4pi+4pi-12 = 0`
`:. sin^-1(sin12)+cos^-1(cos12) =0`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1) (sin 12) + cos^(-1) (cos 12) is equal to

The value of cos^(-1)(-1)+sin^(-1)(1) is

The value of cos^(-1)(cos 12)-sin^(-1)(sin14) is -2 b. 8pi-26 c. 4pi+2 none of these

Find the value of sin^(-1)(sin7) and sin^(-1)(sin(-5))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

The value of sin^(-1)sin17+cos^(-1)cos10 is equal to

The value of sin^(-1){cot(sin^(-1)(sqrt((2-sqrt3)/4)+cos^(-1)(sqrt(12)/4)+sec^(-1)sqrt2)} is

Evaluate each of the following: sin^(-1)(sin12) (ii) sin^(-1)(sin2)

Find the value of sin^(-1)[cos{sin^(-1)(-(sqrt(3))/2)}]