Home
Class 12
MATHS
2tan^(-1)(-2) is equal to (a)-cos t^(-...

`2tan^(-1)(-2)` is equal to (a)`-cos t^(-1)((-3)/5)` (b) `-pi+cos^(-1)3/5` (c)`-pi/2+tan^(-1)(-3/4)` (d) `-picot^(-1)(-3/4)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The angle between the tangents to the curves y=x^2a n dx=y^2a t(1,1) is cos^(-1)(4/5) (b) sin^(-1)(3/5) tan^(-1)(3/4) (d) tan^(-1)(1/3)

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

sin^(2) (pi/6)+cos^(2) (pi/3)-tan^(2) (pi/4)=-1/2

Evaluate the following: sin^(-1)(sinpi/4) (ii) cos^(-1)(cos2pi/3) tan^(-1)(tanpi/3)

Prove that: sin^(-1)(-4/5)=tan^(-1)(-4/3)=cos^(-1)(-3/5)-pi

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

tan^(-1)((-1+sin1)/(cos1)) equals (A) 0 (B) 1-pi/2 (C) pi/2-1 (D) 1/2-pi/4

cos(tan^(-1)3/4)+cos(tan^(-1)x) is equal to