Home
Class 12
MATHS
Find the minimum value of the function f...

Find the minimum value of the function `f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x`

Text Solution

AI Generated Solution

To find the minimum value of the function \[ f(x) = \frac{\pi^2}{16} \cot^{-1}(-x) - \cot^{-1}(x), \] we will follow these steps: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Minimum value of the function f(x)= (1/x)^(1//x) is:

Find the minimum value of f(x)= pi^2/(16 cot^-1 (-x)) - cot^-1 x

Find the maximum and minimum values of the function f(x) = (sin x)/(1+ tan x) ,(0 lt x lt 2pi) .

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

Find the range of the function f(x)=cot^(-1)(log)_(0. 5)(x^4-2x^2+3)

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

The number of integral values in the range of the function f(x)=sin^(-1)x-cot^(-1)x+x^(2)+2x +6 is

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .