Home
Class 12
MATHS
If (1)/(sqrt2) lt x lt 1, then prove tha...

If `(1)/(sqrt2) lt x lt 1`, then prove that `cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x lt 0 , then prove that cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

underset(x to 0)(Lt) (sqrt(1 - cos 2 x))/(sqrt(2)x) =

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

cos^(-1)(sqrt((1+cos x)/2))

Prove that cos^(-1){sqrt((1+x)/2)}=(cos^(-1)x)/2