Home
Class 12
MATHS
Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)...

Prove that `cos^(-1)((1-x^(2n))/(1+x^(2n)))=2tan^(-1)x^n ,0 lt x llt oo`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1) ((1 - x^(2n))/(1 + x^(2n))) = 2 tan^(-1) x^(n), 0 lt x lt oo

Differentiate the following function with respect to x : cos^(-1)((1-x^(2n))/(1+x^(2n))) , 0ltxltoo

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)x/a ,-a lt x lt a

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If -oo lt x le 0 then cos ^(-1)((1-x^(2))/(1+x^(2))) equals

If 0 le x lt oo, then cos^(-1)((1-x^(2))/(1+x^(2))) equals

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

Differentiate the following function with respect to x : t a n^(-1)((2^(x+1))/(1-4^x)) , 0 lt x lt oo

Prove that tan^(-1) {(x)/(a + sqrt(a^(2) - x^(2)))} = (1)/(2) sin^(-1).(x)/(a), -a lt x lt a