Home
Class 12
MATHS
Prove that: cos e c(tan^(-1)("cos"(cot^(...

Prove that: `cos e c(tan^(-1)("cos"(cot^(-1)("sec"(sin^(-1)a)))))=sqrt(3-a^2),` where `a in [0,1]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sec(tan^-1 1)+cos e c(cot^(-1) 1)=4

Prove that : sin cot^(-1) tan cos^(-1) x=x

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))

If x=cos e c[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[cot^(-1){"sin"(tan^(-1)(cos e c(cos^(-1)a)))}] then find the relation between x and y

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

If x = cosec[tan^(-1){"cos"(cot^(-1)(sec(sin^(-1)a)))}] and y="sec"[cot^(-1){"sin"(tan^(-1)(cos e c(cos^(-1)a)))}] show that x = y

Prove that sin cot^(-1) tan cos^(-1) x = sin cosec^(-1) cot tan^(-1) x = x, " where " x in [0,1]

The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c^(-1)x))))+1=0 where x >0 is

The number of solutions of "cos"(2sin^(-1)("cot"(tan^(-1)(sec(6cos e c^(-1)x))))+1=0 where x >0 is

Prove that: tan^(-1)sqrt(x)=1/2cos^(-1)((1-x)/(1+x)), x in [0,1]