Home
Class 12
MATHS
If x lt 0, then prove that cos^(-1) x = ...

If `x lt 0`, then prove that `cos^(-1) x = pi - sin^(-1) sqrt(1 - x^(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x lt 0 , then prove that cos^(-1) x = pi + tan^(-1). (sqrt(1 - x^(2)))/(x)

If (1)/(sqrt2) lt x lt 1 , then prove that cos^(-1) x + cos^(-1) ((x + sqrt(1 - x^(2)))/(sqrt2)) = (pi)/(4)

If x lt 0 , the prove that cos^(-1) ((1 + x)/(sqrt(2(1 + x^(2))))) = (pi)/(4) - tan^(-1) x

If -1< x < 0 , then cos^(-1)x is equal to (a) sec^(-1)(1/ x) (b) pi-sin^(-1)sqrt(1+x^2) (c) pi+tan^(-1)(x/(sqrt(1-x^2))) (d) cot^(-1)(x/(sqrt(1-x^2))) .

Prove each of the following tan^(-1) x=-pi +cot^(-1) 1/x=sin^(-1) (x)/(sqrt(1+x^(2)) =-cos^(-1) (1)/(sqrt(1+x^(2))" when "x lt 0

Statement -1: if -1lexle1 then sin^(-1)(-x)=-sin^(-1)x and cos^(-1)(-x)=pi-cos^(-1)x Statement-2: If -1lexlex then cos^(-1)x=2sin^(-1)sqrt((1-x)/(2))= 2cos^(-1)sqrt((1+x)/(2))

Prove that : cos^(-1) x + cos^(-1) ((x)/(2) + (sqrt( 3-3x^2) )/( 2) ) = (pi)/ (3)

Prove that: "sin"[cot^(-1){"cos"(tan^(-1)x)}]=sqrt((x^2+1)/(x^2+2))

Prove that : cos^(-1) x = 2 cos^(-1) sqrt((1+x)/(2)) (ii) Prove that : tan^(-1)((cosx + sin x)/(cosx - sin x)) = (pi)/(4)+ x

Prove that cos (tan^(-1) (sin (cot^(-1) x))) = sqrt((x^(2) + 1)/(x^(2) + 2))