Home
Class 12
MATHS
If sin(sin^(-1)1/5+cos^(-1)x)=1, then fi...

If `sin(sin^(-1)1/5+cos^(-1)x)=1`, then find the value of x.

Text Solution

AI Generated Solution

To solve the equation \( \sin(\sin^{-1} \frac{1}{5} + \cos^{-1} x) = 1 \), we will follow these steps: ### Step 1: Understand the condition for sine to equal 1 The sine function equals 1 at specific angles. The primary angle where this occurs is \( \frac{\pi}{2} \). Therefore, we can set up the equation: \[ \sin(\sin^{-1} \frac{1}{5} + \cos^{-1} x) = 1 \implies \sin^{-1} \frac{1}{5} + \cos^{-1} x = \frac{\pi}{2} \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin(sin^(-1)(1/5)+cos^(-1)(x))=1 Find the value of x .

If cos(2sin^(-1)x)=1/9, then find the values of xdot

If cos(sin^(-1)(2/5)+cos^(-1)x)=0 find the value of xdot

If cos(sin^(-1)(2/5)+cos^(-1)x)=0 find the value of xdot

If cos((sin^(-1)2)/5+cos^(-1)x)=0 find the value of xdot

If sin(cos^(-1)(5/13)+sin^(-1)x)=1 find the value of xdot

If sin(cos^(-1)5/(13)+sin^(-1)x)=1 find the value of xdot

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If cos(cos^(-1)3/5+sin^(-1)x)=0 , find the values of xdot

If sin^(-1)x=pi/5,forsom ex in (-1,1), then find the value of cos^(-1)xdot