Home
Class 12
MATHS
Solve sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(...

Solve `sin^(-1)(14)/(|x|)+sin^(-1)(2sqrt(15))/(|x|)=pi/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1). (14)/(|x|) + sin^(-1).(2 sqrt15)/(|x|) = (pi)/(2)

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

Solve for x: sin^(-1)(1-x)-2sin^(-1)x=pi/2

The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15))/(|x|))=cos^(-1)((14)/(|x|)) is

Solve the equation for x : "sin"^(-1)(5)/(x)+"sin"^(-1)(12)/(x)=(pi)/(2), x ne 0 .