Home
Class 12
MATHS
Solve the equation tan^(-1)2x+tan^(-1)3x...

Solve the equation `tan^(-1)2x+tan^(-1)3x=pi/4`

Text Solution

AI Generated Solution

To solve the equation \( \tan^{-1}(2x) + \tan^{-1}(3x) = \frac{\pi}{4} \), we can follow these steps: ### Step 1: Use the formula for the sum of inverse tangents We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] for \( ab < 1 \). Here, let \( a = 2x \) and \( b = 3x \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan^(-1)2x+tan^(-1)3x=pi/4 .

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

Solve : tan^(-1)2x+tan^(-1)3x=pi/4

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

solve the equation cot^-1 x + tan^-1 3 = pi/2

Solve the equation 2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=pi/2 is 2 (b) 3 (c) 1 (d) 0

Solve the equation : tan x tan 4x = 1

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2