Home
Class 12
MATHS
If sin^(-1)xi in [0,1]AAi=1,2,3, .28 th...

If `sin^(-1)x_i in [0,1]AAi=1,2,3, .28` then find the maximum value of `sqrt(sin^(-1)x_1)sqrt(cos^(-1)x_2)+sqrt(sin^(-1)x_2)sqrt(cos^(-1)x_3)+` `sqrt(sin^(-1)x_3)sqrt(cos^(-1)x_4)++sqrt(sin^(-1)x_(28))sqrt(cos^(-1)x_1)`

Text Solution

AI Generated Solution

To solve the problem, we need to find the maximum value of the expression: \[ E = \sqrt{\sin^{-1} x_1} \sqrt{\cos^{-1} x_2} + \sqrt{\sin^{-1} x_2} \sqrt{\cos^{-1} x_3} + \ldots + \sqrt{\sin^{-1} x_{28}} \sqrt{\cos^{-1} x_1} \] where \( \sin^{-1} x_i \) is in the interval \([0, 1]\) for \( i = 1, 2, \ldots, 28\). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

sin^(-1)sqrt(x)+cos^(-1)sqrt(1-x)=

(sin^(-1)x)/(sqrt(1-x^(2))

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx

Evaluate: int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))\ dx

Find : int(sin^(-1)sqrt(x)-cos^(-1)sqrt(x))/(sin^(-1)sqrt(x)+cos^(-1)sqrt(x))dx ,x in [0,1]

cos^(- 1)x=2sin^(- 1)sqrt((1-x)/2)=2cos^(- 1)sqrt((1+x)/2)

The domain of f(x)=sqrt(sin^(-1)(3x-4x^(3)))+sqrt(cos^(-1)x) is equal to

(cos x)/(sqrt(1+sin x))

Find the possible values of sin^(-1) (1 - x) + cos^(-1) sqrt(x -2)