Home
Class 12
MATHS
Prove that cos^(-1)4/5 + cos^(-1)(12)/(1...

Prove that `cos^(-1)4/5 + cos^(-1)(12)/(13)=cos^(-1)(33)/(65)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^(-1)4/5cos^(-1)(12)/(13)=cos^(-1)(33)/(65)

Prove that cos^(-1) (3/5)+cos^(-1) (12/13) +cos^(-1)(63/65)=pi/2

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((63)/(65))

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that: sin^(-1)((63)/(65))=sin^(-1)(5/(13))+cos^(-1)(3/5)

Prove that sin^(-1)(4/5)+tan^(-1)(5/12)+cos^(-1)(63/65)=pi/2