Home
Class 12
MATHS
The numerical value of "tan"(2tan^(-1)(1...

The numerical value of `"tan"(2tan^(-1)(1/5)-pi/4` is equal to____

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

1/2tan^(- 1)(12/5) is equal to

Write the value of tan(2tan^(-1)(1/5)) .

Write the value of tan(2tan^-1(1/5)) .

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

Write the value of tan^(-1){tan((15pi)/4)}

The principal value of sin^-1 {tan ((-5pi)/4)} is

The numerical value of tan(pi/3)+2tan((2pi)/3)+4tan((4pi)/3)+8tan((8pi)/3) is equal to (A) -5sqrt(3) (B) -5/(sqrt3) (C) 5sqrt(3) (D) 5/(sqrt3)

The value of tan^(-1)(1)+cos^(-1)(-1/2)+sin^(-1)(-1/2) is equal to pi/4 b. (5pi)/(12) c. (3pi)/4 d. (13pi)/(12)

Evaluate: tan{2t a n-1 1/5+pi/4}

Prove that : tan(2tan^(- 1)\ 1/5-pi/4)+7/17=0