Home
Class 12
MATHS
Solve sin^(-1)x+sin^(-1)2x=pi/3dot...

Solve `sin^(-1)x+sin^(-1)2x=pi/3dot`

Text Solution

AI Generated Solution

To solve the equation \( \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \), we will follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3} \] We can isolate \( \sin^{-1} 2x \): ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)(1-x)-2sin^(-1)x=pi/2

solve :sin^-1x+sin^-1 2x=pi/3

solve :sin^-1x+sin^-1 2x=pi/3

Solve sin^(-1)(1-x)-2sin ^(-1)x=pi/2

If sin^(- 1)(x)+sin^(- 1)(2x)=pi/3 then x=

Solve 2sin^(-1)x + sin^(-1) (1-x)= (pi)/(2)

Solve : sin^(-1)( x) + sin^(-1)( 2x) = sin^(-1)(sqrt(3)/2) .

The solution of sin^(-1)x-sin^(-1)2x=pm(pi)/(3) is

Solve : "sin"(sin^(-1)x)=1/2

Solve: sin^(-1)x=pi/6+cos^(-1)x