Home
Class 12
MATHS
If x > y > z >0, then find the value of ...

If `x > y > z >0,` then find the value of `cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(z y-z)+cot^(-1)(z x+1)/(z-x)`

Text Solution

AI Generated Solution

To solve the given problem, we need to find the value of the expression: \[ \cot^{-1}\left(\frac{xy + 1}{x - y}\right) + \cot^{-1}\left(\frac{yz + 1}{zy - z}\right) + \cot^{-1}\left(\frac{zx + 1}{z - x}\right) \] Given that \( x > y > z > 0 \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x gt y gt z gt 0 , then find the value of "cot"^(-1) (xy + 1)/(x - y) + cot^(-1).(yz + 1)/(y - z) + cot^(-1).(zx + 1)/(z - x)

If x + y + z = xyz and x, y, z gt 0 , then find the value of tan^(-1) x + tan^(-1) y + tan^(-1) z

If x y z=0, then find the value of (a^x)^(y z)+(a^y)^(z x)+(a^z)^(x y)= (a)3 (b) 2 (c)1 (d) 0

If x+y+z=1 , then the least value of (1)/(x)+(1)/(y)+(1)/(z) , is

If x+z=1,y+z=1,x+y=4 then the value of y is

If 2^x=3^y=6^(-z) find the value of (1/x+1/y+1/z)

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

The value of {(x-y)^3+(y-z)^3+(z-x)^3}/{9(x-y)(y-z)(z-x)} (1) 0 (2) 1/9 (3) 1/3 (4) 1

If x , y , z are different from zero and |[1+x,1, 1],[1 , 1+y ,1],[ 1 ,1, 1+z]|=0 then the value of x^(-1)+y^(-1)+z^(-1) is (a) x y z (b) x^(-1)y^(-1)z^(-1) (c) -x-y-z (d) -1