Home
Class 12
MATHS
The value of a for which a x^2+sin^(-1)...

The value of `a` for which `a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=0` has a real solution is `pi/2` (b) `-pi/2` (c) `2/pi` (d) `-2/pi`

Text Solution

Verified by Experts

`ax^2 + sin^-1(x^2-2x+2) + cos^-1(x^2-2x+2) = 0`
`=>ax^2 + sin^-1((x-1)^2 + 1) + cos^-1((x-1)^2 + 1) = 0`
Now, maximum value of `sin^-1 y and cos^-1 y` is `1`.
`:. (x-1)^2 ` should be `0`.
`=> x = 1`
If we put `x = 1` in the given equation,
`a+sin^-1(1)+cos^-1(1) = 0`
`=> a+pi/2+0 = 0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of a for which a x^2+sin^(-1)(x^2-2x+2)+cos^(-1)(x^2-2x+2)=1 has a real solution is pi/2 (b) -pi/2 (c) 2/pi (d) -2/pi

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to pi/2 (b) -pi (c) pi (d) -pi/2

The exhaustive set of values of a such that, x^2+a x+sin^(-1)(x^2-4x+5)+cos^(-1)(x^2-4x+5)=0 (A) {-2-pi/4} (B) {-oo,-2-pi/4} (C) {-oo,-2-pi/4} (D) none of these

The exhaustive set of values of a such that, x^2+a x+sin^(-1)(x^2-4x+5)+cos^(-1)(x^2-4x+5)=0 (A) {-2-pi/4} (B) {-oo,-2-pi/4} (C) {-oo,-2-pi/4} (D) none of these

The value of sin^(-1)("cos"(cos^(-1)(cosx)+sin^(-1)(sinx))), where x in (pi/2,pi) , is equal to a) pi/2 (b) -pi (c) pi (d) -pi/2

The range of sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [.] denotes the greatest integer function, is (a) {pi/2,pi} (b) {pi} (c) {pi/2} (d) none of these

For the equation cos^(-1)x+cos^(-1)2x+pi=0 , the number of real solution is (A)1 (B) 2 (C) 0 (D) oo

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx