Home
Class 12
MATHS
Find the value of x for which sec^(-1)x...

Find the value of `x` for which `sec^(-1)x+sin^(-1)x=pi/2dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Solve sin^(-1)x+sin^(-1)2x=pi/3dot

Find the value of x for which f(x) = 2 sin^(-1) sqrt(1 - x) + sin^(-1) (2 sqrt(x - x^(2))) is constant

Find the value of "cos"(2cos^(-1)x+sin^(-1)x) at x=1/5, where 0lt=pi and -pi/2lt=sin^(-1)xlt=pi/2dot

Find the value of x for which f(x)=sqrt(sinx-cosx) is defined, x in [0,2pi)dot

If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0, then the value of 2sec^(-1)(x/2) + sin^(-1)(x/2) is equal to

If sin^(-1)sqrt(x^2+2x + 1) + sec^(-1)sqrt(x^2 + 2x + 1) = pi/2; x!= 0, then the value of 2sec^(-1)(x/2) + sin^(-1)(x/2) is equal to

Find the value of x for which the following expression are defined (i) sin^(-1) (3x -2) (ii) cos^(-1) (log_(e) x) (iii) sec^(-1) (x^(2) -2)

The values of x which satisfy 18(sin^(-1)x)^(2)-9pi sin^(-1)x +pi^(2)lt 0 and 18(tan^(-1)x)^(2)-9pi tan^(-1)x + pi^(2)lt 0 simultaneously are

Find the value of sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)dot