Home
Class 12
MATHS
Solve the equation sqrt(|sin^(-1)| cos x...

Solve the equation `sqrt(|sin^(-1)| cos x|| + |cos^(-1)| sin x||) = sin^(-1)|cos x | -cos^(-1)| sin x, (-pi)/(2) le x le (pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

solve sin^(-1) x le cos^(-1) x

Solve the equation sin^2x-cos^2x=(1)/(2)

Solve the equation of x:sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : 4sin^(-1)x=pi-cos^(-1)x

Solve : sin ^(-1)x - cos ^(-1) x = (pi )/(6)

Solve the equation for x: sin^(-1) x+sin^(-1) (1-x)=cos^(-1) x, x ne 0

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

Solve the equation sin x + cos x -2sqrt2 sin x cos x =0

If |sin^(-1)x|+|cos^(-1)x| = pi/2, then x in