Home
Class 12
MATHS
Find the number of positive integral sol...

Find the number of positive integral solution of the equation `tan^(-1)x+cos^(-1)(y/(sqrt(1+y^2)))=sin^(-1)(3/(sqrt(10)))`

Text Solution

AI Generated Solution

To solve the equation \( \tan^{-1} x + \cos^{-1} \left( \frac{y}{\sqrt{1+y^2}} \right) = \sin^{-1} \left( \frac{3}{\sqrt{10}} \right) \), we will follow these steps: ### Step 1: Rewrite the equation using trigonometric identities We know that: \[ \cos^{-1} \left( \frac{y}{\sqrt{1+y^2}} \right) = \tan^{-1} \left( \frac{1}{y} \right) \] This is because if we take a right triangle where the opposite side is 1 and the adjacent side is \( y \), then the hypotenuse will be \( \sqrt{1+y^2} \). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of positive integral solution of the equation Tan^(-1)x+Tan^(-1)(1//y)=Tan^(-1)3 is

The number of positive integral solutions of tan^(-1)x + cot^(-1)y= tan^(-1)3 is :

Find the number of equal positive integral solutions of equation x_1+x_2+x_3=10.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

Find the number of positive integral solutions satisfying the equation (x_1+x_2+x_3)(y_1+y_2)=77.

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

Find the smallest positive root of the equation sqrt(sin(1-x))=sqrt(cos"x")

The sum of all the solution(s) of the equation sin^(-1)2x=cos^(-1)x is 0 (2) 2/(sqrt(5)) (3) 1/(sqrt(5)) (4) (-1)/(sqrt(5))