Home
Class 12
MATHS
Find the domain for f(x)=sin^(-1)((1+x^2...

Find the domain for `f(x)=sin^(-1)((1+x^2)/(2x))`

Text Solution

AI Generated Solution

To find the domain of the function \( f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right) \), we need to ensure that the expression inside the inverse sine function lies within the range of \([-1, 1]\). ### Step-by-Step Solution: 1. **Set Up the Inequality**: We need to solve the inequalities: \[ -1 \leq \frac{1+x^2}{2x} \leq 1 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain for f(x)=sin^(-1)((x^(2))/(2)) .

Find the domain of f(x)=sin^(-1)((x^2)/2)dot

Find the domain of f(x)=sin^(-1)(-x^2)dot

Find the domain of f(x)=sin^(-1){(log)_9((x^2)/4)}

Find the domain of f(x)=sin^(-1){(log)_9((x^2)/4)}

Find the domain of: y=sin^(-1)((x^(2))/(1+x^(2)))

Find the domain of f(x)=sin^(-1)x+cosxdot

Find the domain of f(x)=sin^(-1)x+cosxdot

Find the domain of sin^(-1)(2x^(2)+1)

Find domain for, f(x)=cos^(-1)[x] .