Home
Class 12
MATHS
Find the number of integers lying in the...

Find the number of integers lying in the interval (0,4) where the function `f(x)=(lim)_(n->oo)(cos( pix/2))^(2n)` is discontinuous

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)= lim_(n->oo)(sinx)^(2n)

lim_(n->oo)sin(x/2^n)/(x/2^n)

Discuss the continuity of f(x)in[0,2],w h e r ef(x)=(lim)_(n->oo)(sin (pix/2))^(2n)

Discuss the continuity of f(x)=("lim")_(n->oo)cos^(2n)xdot

Let f(x)=[x^3 - 3] , where [.] is the greatest integer function, then the number of points in the interval (1,2) where function is discontinuous is (A) 4 (B) 5 (C) 6 (D) 7

Draw the graph of the function y=f(x)=lim_(ntooo) cos^(2n)x and find its period.

Discuss the continuity of f(x)=(lim)_(n->oo)(x^(2n)-1)/(x^(2n)+1)

Find the values of a if f(x)=("lim")_(n rarr oo)(a x^(2n)+2)/(x^(2n)+a+1) is continuous at x=1.

The equivalent definition of the function f(x)=lim_(n to oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)), x gt 0 , is

Find the period of f(x)=sin((pix)/(n !))-cos((pix)/((n+1)!))