Home
Class 12
MATHS
Discuss the differentiability of f(x)=[x...

Discuss the differentiability of `f(x)=[x]+|1-x|, x in (-1,3),w h e r e[dot]` represents greatest integer function.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the differentiability of f(x)=[x]+setminus1-x|dotx in (-1,3),w h e r e[dot] represents greatest integer function.

Discuss the differentiability of f(x) |[x]| x| "in" -1 lt x le 2, where [.] repesents the greatest intger function .

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Discuss the contiuity of the funtion f(x) =[x] +|1-x|, -1 le xle 3, where [.] represents the greatest integer function .

Discuss the differentiability of f(x) =x[x]{x} in interval [-1,2] , where [.] and {.} denotes the greatest integer function and fractional part fntion , respectively .

Evaluate: int_0^(100)(x-[x]dx(w h e r e[dot] represents the greatest integer function).

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

f:(2,3)vec(0,1)d efin e db yf(x)=x-[x],w h e r e[dot] represents the greatest integer function.

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.