Home
Class 12
MATHS
If for all real values of ua n dv ,2f(u)...

If for all real values of `ua n dv ,2f(u)cosv=(u+v)+f(u-v),` prove that for all real values of `x ,` `f(x)+f(-x)=2acosxdot` `f(pi-x)+f(-x)=0` `f(pi-x)+f(x)=2bsinxdot` Deduce that `f(x)=acosx+bsinx ,w h e r ea ,b` are arbitrary constants.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=2 for all real numbers x, then f(x+2)=

If f(x) = x^(2) - 4 , for what real number values of x will f(f(x))= 0 ?

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If f is real-valued differentiable function such that f(x)f'(x)<0 for all real x, then

If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f'(1)=1, then f(e) is.

Let f be a real valued function such that f(x)+3xf(1/x)=2(x+1) for all real x > 0. The value of f(5) is

A certain function f(x) has the property that f(3x)=alpha f(x) for all positive real values of x and f(x)=1-|x-2| for 1 2)(f(x))^(cosec((pi x)/2)) is

For all real numbers x , f(2x) = x^(2) - x + 3 . An expression for f(x) in terms of x is

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

If f(x) = (a-x^n)^(1/n), a > 0 and n in N , then prove that f(f(x)) = x for all x.