Home
Class 12
MATHS
The function f(x) is defined on the inte...

The function `f(x)` is defined on the interval [0.1] Then match the following columns Column I: Function, Column II: Domain `f(tanx)` , p. `[2npiddotpi/2,2npi+pi/2],n in Z` `f(sinx)` , q. `[2npi,2npi+pi/6]uu[2npi+(5pi)/6,(2n+1)pi],n in Z` `f(cosx)` , r. `[2npi,(2n+1)pi],n in Z` `f(2sinx)` , s. `[npi,npi+pi/4],n in Z`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of definition of the function f(x)=sqrt(-cosx)+sqrt(sinx) is: [2npi,2npi+pi/2],n in I b. [2npi,(2n+1)pi],n in I c. [2n+1/2pi(2n+1)pi],n in I d. [(2n+1)pi,(2n+3/2)pi],n in I

The expression cos3theta+sin3theta+(2sin2theta-3)(sintheta-costheta) is positive for all theta in (2npi-(3pi)/4,2npi+pi/4),n in Z (2npi-pi/4,2npi+pi/6),n in Z (2npi-pi/3,2npi+pi/3),n in Z (2npi-pi/4,2npi+(3pi)/4),n in Z

Let tanx-tan^2x >0 and |2sinx| npi,n in Z (b) x > npi-pi/6,n in Z x

The general solution of the equation sin^(100)x-cos^(100)x=1 is (a) 2npi+pi/3,n in I (b) n pi+pi/2,n in I (c) npi+pi/4,n in I (d) 2npi=pi/3,n in I

Let tanx-tan^2x >0 and |2sinx| x > npi,n in Z (b) x > npi-pi/6,n in Z x

The function f(x)=tanx is discontinuous on the set {npi; n in Z} (b) {2npin in Z} {(2n+1)pi/2: n in Z} (d) {(npi)/2: n in Z}

The roots of the equation cot x-cosx=1-cot xcos x are (1) npi+pi/4,n in I (2) 2npi+pi/4,n in I (3) 2npi+-pi or npi+pi/4,n in I (4) 2npi+pi or (4n+1)pi/4,n in I (5) npi,n in I

Which of the following sets can be the subset of the general solution of 1+c o s3x=2cos2x(n in Z)? (a) npi+pi/3 (b) npi+pi/6 (c) npi-pi/6 (d) 2npi

Which of the following is not the solution of the equation sin5x=16sin^5x(n in Z)? (a) npi (b) npi+pi/6 (c) npi-pi/6 (d) none of these

If 4sin^2theta=1, then the values of theta are 2npi+-pi/3,\ n in Z b. npi+-pi/3,\ n in Z c. npi+-pi/6,\ n in Z d. 2npi+-pi/6,\ n in Z