Home
Class 12
MATHS
The range of f(x)=cos^(-1)((1+x^2)/(2x))...

The range of `f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2)` is `{0,1+pi/2}` (b) `{0,1+pi)` `{1,1+pi/2}` (d) `{1,1+pi}`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of f(x)=cos^(-1)((1+x^2)/(2x))+sqrt(2-x^2) is (a) {0,1+pi/2} (b) {0,1+pi) {1,1+pi/2} (d) {1,1+pi}

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a) [0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

The range of f(x)=sin^(-1)((x^2+1)/(x^2+2)) is (a)[0,pi/2] (b) (0,pi/6) (c) [pi/6,pi/2] (d) none of these

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

The range of f(x)=sin^(-1)(sqrt(x^2+x+1)) i s (a) (0,pi/2) (b) (0,pi/3) (c) [pi/3,pi/2] (d) [pi/6,pi/3]

If f(x)=cos^(-1)((2x^2+1)/(x^2+1)), then rang of f(x) is [0,pi] (2) (0,pi/4] (0,pi/3] (4) [0,pi/2)

Range of function f(x)=cot^(-1)(2x-x^2), is (a) [pi/4,(3pi)/2] (b) [0,pi/4] [0,pi/2] (d) [pi/4,pi]

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3

int_0^1sqrt((1-x)/(1+x))dx= (a) (pi)/2 (b) (pi)/2-1 (c) (pi)/2+1 (d) pi+1