Home
Class 12
MATHS
If f(x)=lambda|sinx|+lambda^2|cosx|+g(la...

If `f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda)` has a period = `pi/2` then find the value of `lambda`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

if mu_21 is 1.5, then find the value of lambda_1/lambda_2.

int_(2)^(4) (3x^(2)+1)/((x^(2)-1)^(3))dx = (lambda)/(n^(2)) where lambda, n in N and gcd(lambda,n) = 1 , then find the value of lambda + n

If the equation x ^2+2(lambda+1)x+lambda^2+lambda+7=0 has only negative roots, then the least value of lambda equals__________.

If the equation cos (lambda "sin" theta) = "sin" (lambda "cos" theta) has a solution in [0, 2pi] , then the smallest value of lambda , is

Let f(x,y) = {(x,y): y^(2) le 4x,0 le x le lambda} and s(lambda) is area such that (S(lambda))/(S(4)) = (2)/(5) . Find the value of lambda .

If x - lambda is a factor of x^(4)-lambda x^(3)+2x+6 . Then the value of lambda is

If "sin" x = lambda has exactly one solution in [0, 9 pi//4] then the number of values of lambda , is

Let f(x) =|(x,1,1), (sin2pix, 2x^2,1), (x^3,3x^4,1)|. If f(x) be an odd function and its odd values is equal g(x), then find the value of lambda. If f(1) g(1) = -4 lambda.

If the equation sin^(-1)(x^2+x +1)+cos^(-1)(lambda x+1)=pi/2 has exactly two solutions, then the value of lambda is

If sin 2x cos 2x cos 4x=lambda has a solution then lambda lies in the interval