Home
Class 12
MATHS
X and Y are two sets and f: X->Y If {f(c...

X and Y are two sets and `f: X->Y` If `{f(c)=y; c subX, y subY}` and `{f^(-1)(d)=x;d subY,x sub X`, then the true statement is `(a) f(f^(-1)(b))=b` `(b) f^(-1)(f(a))=a` `(c) f(f^(-1)(b))=b, b sub y` `(d) f^(-1)(f(a))=a, a sub x`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(log)_e x| , then (a) f'(1^+)=1 (b) f^'(1^(-))=-1 (c) f'(1)=1 (d) f'(1)=-1

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=ax^(2)+bx+c and f(x+1)=f(x)+x+1 , then the value of (a+b) is __

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

A function f: R -> R satisfies the equation f(x)f(y)-f(x y)=x+yAAx ,y in Ra n df(1)>0 , then a. f(x)f^(-1)(x)=x^2-4 b. f(x)f^(-1)(x)=x^2-6 c. f(x)f^(-1)(x)=x^2-1 d. none of these

If f(x)=|[0,x-a, x-b], [x+a,0,x-c], [x+b, x+c,0]|,t h e n (a) f(a)=0 (b) f(b)=0 (c) f(0)=0 (d) f(1)=0

If f(x)=ax+b and g(x)=cx+d, then f(g(x))=g(f(x)) is equivalent to (A) f(a) = g(c ) (B) f(b) = g(b) (C) f(d) = g(b) (D) f(c ) = g(a)

If f(x)=(x-1)/(x+1) , then prove that: (f(b)-f(a))/(1+f(b)*f(a))=(b-a)/(1+ab)

If f(x)=(x)/(x-1) , then evaluate : (f(a//b))/(f(b//a))