Home
Class 12
MATHS
Let g(x) be a function defined on[-1,1]...

Let `g(x)` be a function defined on`[-1,1]dot` If the area of the equilateral triangle with two of its vertices at `(0,0)`a n d`(x ,g(x))` is (a)`(sqrt(3))/4` , then the function `g(x)` is (b)`g(x)=+-sqrt(1-x^2)` (c)`g(x)=sqrt(1-x^2)` (d)`g(x)=-sqrt(1-x^2)` `g(x)=sqrt(1+x^2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=1/abs(x), g(x)=sqrt(x^(-2))

If f(x)=sqrt(x^(2)-1) and g(x)=(10)/(x+2) , then g(f(3)) =

f(x)=sqrt(1-x^(2)), g(x)=sqrt(1-x)*sqrt(1+x) . Identical functions or not?

Suppose that g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

If f(x)=sin^2x and the composite function g(f(x))=|sinx| , then g(x) is equal to (a) sqrt(x-1) (b) sqrt(x) (c) sqrt(x+1) (d) -sqrt(x)

Describe fog and gof wherever is possible for the following functions (i) f(x)=sqrt(x+3),g(x)=1+x^(2) (ii) f(x)=sqrt(x),g(x)=x^(2)-1

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

Let g (x )=f ( x- sqrt( 1-x ^(2))) and f ' (x) =1-x ^(2) then g'(x) equal to: