Home
Class 12
MATHS
The domain of f(x) is (0,1) Then the dom...

The domain of `f(x)` is (0,1) Then the domain of `(f(e^x)+f(1n|x|)` is
(a)`(-1, e)`
(b) `(1, e)`
(c)`(-e ,-1)`
(d) `(-e ,1)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x) is (0,1)dot Then the domain of (f(e^x)+f(1n|x|) is a. (-1, e) (b) (1, e) (c) (-e ,-1) (d) (-e ,1)

The domain of f(x)i s(0,1)dot Then the domain of (f(e^x)+f(1n|x|) is (a)(-1, e) (b). (1, e) (c).(-e ,-1) (d) (-e ,1)

The domain of f(x) is, if e^(x)+e^(f(x))=e

If f(x)=e^(1-x) then f(x) is

If e^(x)+e^(f(x))=e , then the domain of the function f is

If e^x+e^(f(x))=e , then the range of f(x) is (-oo,1] (b) (-oo,1) (1, oo) (d) [1,oo)

Let f:[1/2,1]->R (the set of all real numbers) be a positive, non-constant, and differentiable function such that f^(prime)(x)<2f(x)a n df(1/2)=1 . Then the value of int_(1/2)^1f(x)dx lies in the interval (a) (2e-1,2e) (b) (3-1,2e-1) (c) ((e-1)/2,e-1) (d) (0,(e-1)/2)

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

The maximum value of x^(1/x),x >0 is (a) e^(1/e) (b) (1/e)^e (c) 1 (d) none of these

f(x)=log_(e)abs(log_(e)x) . Find the domain of f(x).