Home
Class 12
MATHS
The range of f(x)=[sinx+[cosx+[tanx+[sec...

The range of `f(x)=[sinx+[cosx+[tanx+[secx]]]],x in (0,pi/4),w h e r e` [.] denotes the greatest integer function less than or equal to `x ,` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Range of f(x) =[1+sinx]+[cosx-1]+[tan^(- 1)x] AA x in [0,2pi] where [] denotes the greatest integer function is

Let f(x)={cos[x],xgeq0|x|+a ,x 0) f(x) exists, where [x] denotes the greatest integer function less than or equal to x .

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate:- int_0^(pi)[cot x]dx ,w h e r e[dot] denotes the greatest integer function.

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

The range of the function f(x)=cosec^(-1)[sinx] " in " [0,2pi] , where [*] denotes the greatest integer function , is

Let [x] denotes the greatest integer less than or equal to x. If f(x) =[x sin pi x] , then f(x) is

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.