Home
Class 12
MATHS
If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|...

If `f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x)` (where [.] denotes the greatest integer function), then the respective fundamental periods of `f(x)`,`g(x)`,and `varphi(x)` are (a) `pi,pi,pi` (b) `pi,2pi,pi` `pi,pi,pi/2` (d) `pi,pi/2,pi`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(-1)^([2/pi]),g(x)=|sinx|-|cosx|,a n dvarphi(x)=f(x)g(x) (where [.] denotes the greatest integer function), then the respective fundamental periods of f(x),g(x),a n dvarphi(x) are pi,pi,pi (b) pi,2pi,pi pi,pi,pi/2 (d) pi,pi/2,pi

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

Let f(x)=(x(sinx+tanx))/([(x+pi)/(pi)]-1//2) (where (.] denotes the greatest integer function) then find f"(0) .

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)= cos [(pi^(2))/(2)] x + sin[(-pi^(2))/(2)]x,[x] denoting the greatest integer function,then

If f(x) = cos [pi]x + cos [pi x] , where [y] is the greatest integer function of y then f(pi/2) is equal to