Home
Class 12
MATHS
Prove that the least positive value of x...

Prove that the least positive value of `x ,` satisfying `tanx=x+1,lies `in` the `in`terval(pi/4,pi/2)dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Prove that the least positive value of x , satisfying tanx=x+1, lies in the interval (pi/4,pi/2)

Prove that the least positive value of x , satisfying tanx=x+1,l i e sint h ein t e r v a l(pi/4,pi/2)dot

Find the smallest positive values of xa n dy satisfying x-y=pi/4a n dcotx+coty=2

The least positive value of x satisfying the equation |x+1|-|x|+3|x-1|+2|x-2|= x+2 is

Least positive inegral value of x satisfying |4x + 3| + |3x - 4| = |7x - 1| is

the least positive value of x satisfying ( sin^(2) 2x + 4 sin^(4) x - 4 sin^(2) x cos^(2) x )/ 4 = 1/9 is

The least positive integral value of 'x' satisfying (e^x-2)(sin(x+pi/4))(x-log_e2)(sinx-cosx)<0

The least positive solution of cot (pi/(3 sqrt(3)) sin 2x)=sqrt(3) lies in

There exists a positive real number of x satisfying "cos"(tan^(-1)x)=xdot Then the value of cos^(-1)((x^2)/2)i s pi/(10) (b) pi/5 (c) (2pi)/5 (d) (4pi)/5