Home
Class 12
MATHS
Let A={x :-1lt=xlt=1}=B be a mapping f: ...

Let `A={x :-1lt=xlt=1}=B` be a mapping `f: AvecB` . Then, match the following columns: Column I (Function), Column II (Type of mapping) P. `f(x)=|x|` , a. one-one q. `f(x)=x|x|` , b. many-one r. `f(x)=x^3` , c. onto s.`f(x)=[x],w h e r e[]` represents greatest integer function, d. into t. `f(x)=sin(pix)/2` ,

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

Find the range of f(x)=(x-[x])/(1-[x]+x '),w h e r e[] represents the greatest integer function.

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Match the column Column I (Function), Column II (Period) p. f(x)=sin^3x+cos^4x , a. pi/2 q. f(x)=cos^4x+sin^4x , b. pi r. f(x)=sin^3x+cos^3x , c. 2pi s. f(x)=cos^4x-sin^4x ,

Discuss the differentiability of f(x)=[x]+|1-x|, x in (-1,3),w h e r e[dot] represents greatest integer function.

Find the points of discontinuity of the function: f(x)=[[x]]-[x-1],w h e r e[dot] represents the greatest integer function

Discuss the differentiability of f(x)= [x] +|1-x| , x in (-1,3),w h e r e[dot] represents greatest integer function.

Find the domain and range of f(x)=sin^(-1)[x]w h e r[] represents the greatest function).

Let f(x) = ([x] - ["sin" x])/(1 - "sin" [cos x]) and g (x) = (1)/(f(x)) and [] represents the greatest integer function, then

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function