Home
Class 12
MATHS
Find the domain of f(x)=sqrt(([x]-1))+sq...

Find the domain of `f(x)=sqrt(([x]-1))+sqrt((4-[x]))` (where [ ] represents the greatest integer function).

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

Knowledge Check

  • The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

    A
    R
    B
    `R^(+)`
    C
    `R^(-)`
    D
    `R-Z`
  • Similar Questions

    Explore conceptually related problems

    The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

    Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

    If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

    f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

    f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

    Find the period of the following. (i) f(x)=(2^(x))/(2^([x])) , where [.] represents the greatest integer function. (ii) f(x)=e^(sinx) (iii) f(x)=sin^(-1)(sin 3x) (iv) f(x) =sqrt(sinx) (v) f(x)=tan((pi)/(2)[x]), where [.] represents greatest integer function.

    The domain of the function f(x)=log_e {sgn(9-x^2)}+sqrt([x]^3-4[x]) (where [] represents the greatest integer function is