Home
Class 12
MATHS
Let f(x)=3x^2-7x+c , where c is a variab...

Let `f(x)=3x^2-7x+c ,` where `c` is a variable coefficient and `x >7/6` . Then the value of `[c]` such that `f(x)` touches `f^(-1)(x)` is (where [.] represents greatest integer function)_________

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|x-1|.([x]=[-x]), then (where [.] represents greatest integer function)

Let f(x) = [sin ^(4)x] then ( where [.] represents the greatest integer function ).

If f(x)=x((e^(|x|+[x])-2)/(|x|+[x])) then (where [.] represent the greatest integer function)

Let f(x) = [x] and [] represents the greatest integer function, then

Find the domain of the function f(x)=(1)/([x]^(2)-7[x]-8) , where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/(sqrt([x]^(2)-[x]-20)) is (where, [.] represents the greatest integer function)

Domain of f(x)=log(x^2+5x+6)/([x]-1) where [.] denotes greatest integer function:

Find the domain and range of f(x)="sin"^(-1)(x-[x]), where [.] represents the greatest integer function.

f(x)=1/sqrt([x]^(2)-[x]-6) , where [*] denotes the greatest integer function.

Let f(x)=3x^(2)-7x+c,x>(7)/(6) ,The value of c such that f(x) touches f^(-1)(x) is (5k+1)/(k) where k=