Home
Class 12
MATHS
Solve |sinx+cosx|=|sinx|+|cosx|,x in [0,...

Solve `|sinx+cosx|=|sinx|+|cosx|,x in [0,2pi]`.

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

Solve : 4sinx.cosx+2sinx+2cosx+1=0

Solve cos^(-1)(cosx)>sin^(-1)(sinx),x in [0,2pi]

The number of solution of 2cosx=|sinx| where x in [0.4pi] is/are

Number of solution of sinx cosx-3cosx+4sinx-13 gt 0 in [0,2pi] is equal to

solve int(3x^2cosx^3+sinx)dx

Solve (sinx)/(1+cosx)+(1+cosx)/(sinx)

Solve the equation sinx+cosx=1

Evaluate: int(sinx+cosx)/(sinx-cosx)dx

The area enclosed by the curves y= sinx+cosx and y = | cosx-sin x | over the interval [0,pi/2]