Home
Class 12
MATHS
Let f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([...

Let `f(x)=e^({e^(|x|sgnx)})a n dg(x)=e^([e^(|x|sgnx)]),x in R ,` where { } and [ ] denote the fractional and integral part functions, respectively. Also, `h(x)=log(f(x))+log(g(x))`. Then for real `x , h(x)` is

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve 2[x]=x+{x},w h r e[]a n d{} denote the greatest integer function and the fractional part function, respectively.

Let f(x) = log _({x}) [x] g (x) =log _({x}){x} h (x)= log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. Domine of h (x) is :

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) = log _([x ]) {x} where [], {} denotes the greatest integer function and fractional part function respectively. Domine of h (x) is :

If f(x)=log_(x^(2))(logx) ,then f '(x)at x= e is

If f(x)=log_(x) (log x)," then find "f'(x) at x= e

If f(x)=log_(e)(log_(e)x)/log_(e)x then f'(x) at x = e is

Find the domain of the function f(x)=log_(e)(x-[x]) , where [.] denotes the greatest integer function.

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. For x in (1,5)the f (x) is not defined at how many points :

prove "lim"_(xvecoo)(ln x)/([x])="lim"_(xvecoo)([x])/(ln x) where [.] is G.I.F. & {.} denotes fractional part function

Period of the function f(x)=sin(sin(pix))+e^({3x}) , where {.} denotes the fractional part of x is