Home
Class 12
MATHS
The domain of f(x)=cos^(-1)((2-|x|)/4)+[...

The domain of `f(x)=cos^(-1)((2-|x|)/4)+[ log(3-x)]^-1` is (a)`[-2,6]` (b) `[-6,2)uu(2,3)` (c) `[-6,2]` (d) `[-2,2]uu(2,3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of f(x)=cos^(-1)((2-|x|)/4)+[l log(3-x)]^1 is [-2,6] (b) [-6,2)uu(2,3) [-6,2] (d) [-2,2]uu(2,3)

Find the domain of the function: f(x)=cos^(-1)((6-3x)/4)+cos e c^(-1)((x-1)/2)

Find the domain f(x)=(log_(2x)3)/(cos^(- 1)(2x-1)

The domain of the function f(x)=(sin^(-1)(3-x))/(I n(|x|-2)i s (a) [2,4] (b) (2,3)uu(3,4] (c) (0,1)uu(1,oo) (d) (-oo,-3)uu(2,oo)

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

The domain of the function: f(x)=log_(3) [-(log_(3) x)^(2)+5 log_3x-6]" is :"

The range of the function f(x)=sqrt(5|x| - x^2 - 6) is equals to (a.) (-3,\ -2)uu(2,3) (b.) [-3,-2)uu[2,3) (c.) [-3,-2]uu[2,3] (d.) none of these

The domain of definition of f(x)=sqrt((x+3)/((2-x)(x-5))) is (a) (-oo,-3]uu(2,5) (b) (-oo,-3)uu(2,5) (c) (-oo,-3]uu[2,5] (d) none of these

The domain of the function f(x)=log_(3)[1-log_(6)(x^(2)-7x+16)] is